Specific amplifications and copy number decreases during human neural stem cells differentiation towards astrocytes, neurons and oligodendrocytes

نویسندگان

  • Ulrike Fischer
  • Ella Kim
  • Andreas Keller
  • Eckart Meese
چکیده

There is growing evidence that gene amplifications are an attribute of normal cells during development and differentiation. During neural progenitor cell differentiation half of the genome is involved in amplification process. To answer the question how specific amplifications occur at different stages and in different lineages of differentiation we analyzed the genes CDK4, MDM2, EGFR, GINS2, GFAP, TP53, DDB1 and MDM4 in human neural stem cells that were induced to differentiate towards astrocytes, neurons and oligodendrocytes. We found specific amplification pattern for each of the eight analyzed genes both in undifferentiated neural stem and progenitor cells and in cells that were induced for differentiation. Different amplification patterns were also found between adherently grown neural stem cells and cells that were grown as spheres. The most frequently amplified genes were MDM2 and CDK4 with the latter amplified in all three lineages at all analyzed stages. Amplification of the analyzed genes was also found in four glioma stem-like cells. The combined amplification data of stem cells and of tumor stem cells can help to define cell populations at the origin of the tumor. Furthermore, we detected a decrease of gene copies at specific differentiation stages most frequently for MDM4. This study shows specific amplification pattern in defined stem cell populations within specific time windows during differentiation processes indicating that amplifications occur in an orderly sequence during the differentiation of human neural stem and progenitor cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors

Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...

متن کامل

In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...

متن کامل

Dynamic Changes in Ezh2 Gene Occupancy Underlie Its Involvement in Neural Stem Cell Self-Renewal and Differentiation towards Oligodendrocytes

BACKGROUND The polycomb group protein Ezh2 is an epigenetic repressor of transcription originally found to prevent untimely differentiation of pluripotent embryonic stem cells. We previously demonstrated that Ezh2 is also expressed in multipotent neural stem cells (NSCs). We showed that Ezh2 expression is downregulated during NSC differentiation into astrocytes or neurons. However, high levels ...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat

Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes.  Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017